InterviewSolution
| 1. |
1). Rs. 77.212). Rs. 70.563). Rs. 76.324). Rs. 79.46 |
|
Answer» Let the principal sum = RS. x We know the formula for compound interest- $( \Rightarrow {\rm{CI}} = \left[ {{\rm{P}}\left\{ {{{\left( {1 + \frac{{\rm{R}}}{{100}}} \right)}^t} - 1} \right\}} \right])$Where, CI = Compound interest P = Principal R = Rate of interest T = Time period Under SCHEME X, C.I. = 10 % p.a. $(\begin{array}{l} \Rightarrow {\rm{CI}} = \left[ {{\rm{P}}\left\{ {{{\left( {1 + \frac{{\rm{r}}}{{100}}} \right)}^t} - 1} \right\}} \right]\\ \Rightarrow 63 = \left[ {{\rm{x}}\left\{ {{{\left( {1 + \frac{{10}}{{100}}} \right)}^2} - 1} \right\}} \right]\\ \Rightarrow 63 = \left[ {{\rm{x}}\left\{ {{{\left( {\frac{{110}}{{100}}} \right)}^2} - 1} \right\}} \right]\\ \Rightarrow 63 = \left[ {\frac{{21}}{{100}}{\rm{x}}} \right] \end{array})$ ⇒ x = Rs. 300 Under scheme Y, C.I. = 12 % p.a. $(\begin{array}{l} \Rightarrow {\rm{CI}} = \left[ {{\rm{P}}\left\{ {{{\left( {1 + \frac{{\rm{r}}}{{100}}} \right)}^t} - 1} \right\}} \right]\\ \Rightarrow {\rm{CI}} = \left[ {300\left\{ {{{\left( {1 + \frac{{12}}{{100}}} \right)}^2} - 1} \right\}} \right]\\ \Rightarrow {\rm{CI}} = \left[ {300\left\{ {{{\left( {\frac{{112}}{{100}}} \right)}^2} - 1} \right\}} \right]\\ \Rightarrow {\rm{CI}} = \left[ {300 \times \frac{{2544}}{{10000}}} \right] \end{array})$ ⇒ CI = Rs. 76.32 |
|