1.

(2n + 7) < (n + 3)2

Answer»

Let P(n): (2n + 7) < (n + 3)2 

For = 1, (2 + 7) < (1+ 3)2 ⇒9<16 is true. 

∴ P(1) is true. 

Let us assume P(k) is true for some k∈ N 

i.e., (2k+ 1) < (k + 3)2 

Consider 2 (k + 1) + 7 = 2k + 2 + 7 

= (2k + 7) + 2 < (k: + 3)2  + 2 = k2  + 6k + 9 + 2 <(k + 4)2 

∴ P(k +1) is true. 

Hence, by mathematical induction, P(n) is true for all n∈N



Discussion

No Comment Found