InterviewSolution
| 1. |
\( (a-b) x+(a+b) y=2 a^{2}-2 b^{2} \) \( (a+b)(x+y)=4 a b \)Solve:(a – b) x + (a + b) y = 2a2 – 2b2 and (a + b) (x + y) = 4ab |
|
Answer» The given system of equations are: ⇒x=2ab−a2+b2b
Given that, (a – b) x + (a + b) y = 2a2 – 2b2 (a + b) (x + y) = 4ab (a – b) x + (a + b) y – 2(a2 – b2) = 0 (a + b)x + (a + b)y – 4ab = 0 On comparing both the equation with the general form we get a1 = a – b, b1 = a + b, c1 = -2, a2 = a + b, b2 = a + b, c2 = -4ab Now by using cross multiplication we get x/(b1c2 – b2c1) = y/(c1a2 – c2a1) = 1/(a1b2 – a2b1) ⇒ x/(-(a + b)4ab + 2(a + b) (a2 – b2)) = y/(− 2(a2 − b2)(a + b) + 4ab(a – b)) = 1/((a − b)(a + b) − (a + b)(a + b)) ⇒ x/(2(a + b)(a2 – b2 + 2ab)) = 1/-2b(a + b) x = (2ab – a2 + b2)/b and, = -y/(2(a – b) (a2 + b2) -2b (a + b)) = 1/ -2b(a + b) y = (a – b)(a2 + b2)/ b(a + b) Hence, x = (2ab – a2 + b2)/b and y = (a – b)(a2 + b2)/ b(a + b) |
|