1.

A body of mass m is situated in a potential field U(x) = Uo(1 – cos α x) when Uo and α are constants. Find the time period of small oscillations.

Answer»

U(x) = Uo(1 − cos αx)

Differentiating both sides with respect to x

\(\frac{dU(x)}{dx}\)= Uo[0 + α sin αx ] = Uoα sin αx

∴ F = − \(\frac{dU(x)}{dx}\) = −Uoα sin α x 

When oscillations are small, sin θ ≈ θ

or sin αx = αx 

∴ F = −Uoα(αx) = −Uoα2x

∴ F = −(Uoα2(i)

We know that F = −kx  (ii)

k = Uoα2  {From (i) & (ii)}

∴ T = \(2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{m}{U_o\alpha^2}}\)



Discussion

No Comment Found

Related InterviewSolutions