InterviewSolution
| 1. |
A body rotates along a circle of radius 0.2 m with a speed of 240 rotations per minute. Calculate angular speed linear speed If the speed of rotation changes to 330 rotations per minute in 10 seconds, calculate the angular and linear acceleration. |
|
Answer» The angular velocity is given by ω1 = \(\frac {2πn1}{t}\)rads-1 Here n1 = 240, t = 1 min = 60 s. ∴ Initial angular velocity = \(\frac{2π \times 240}{60}\)= 8π rads-1 Initial linear velocity v1 = rω1; Here, r = 0.2 m ∴ v1 = 0.20 × 8π = 5.02 ms-1 ∴ Final angular velocity ω2 = \(\frac{2π \times n2}{t}\) = \(\frac{2π \times330}{60}\) = 11π rads-1 ∴ Final linear velocity v2 = rω2 = 0.2 × 11π = 6.91 ms-1 From the equation of motion, we have, ω2 = ω1 + at ∴ a = \(\frac{w_2-w_1}{t}\) Here, ω2 = 11π, ω1 = 8 π, ∴ α =\(\frac{w_2-w_1}{t}\) = \(\frac {11π-8π}{10}\) =\(\frac {3π}{10}\) = 0.3π rads-2 Linear acceleration is a = rα = 0.2 × 0.3π = 0.188 ms-2. |
|