1.

A body rotates along a circle of radius 0.2 m with a speed of 240 rotations per minute. Calculate angular speed linear speed If the speed of rotation changes to 330 rotations per minute in 10 seconds, calculate the angular and linear acceleration.

Answer»

The angular velocity is given by

ω1\(\frac {2πn1}{t}\)rads-1

Here n1 = 240,

t = 1 min = 60 s.

∴ Initial angular velocity

\(\frac{2π \times 240}{60}\)= 8π rads-1

Initial linear velocity

v1 = rω1;

Here, r = 0.2 m

∴ v1 = 0.20 × 8π

= 5.02 ms-1

∴ Final angular velocity

ω2\(\frac{2π \times n2}{t}\)

\(\frac{2π \times330}{60}\) = 11π rads-1

∴ Final linear velocity v2 = rω2

= 0.2 × 11π = 6.91 ms-1

From the equation of motion, we have,

ω2 = ω1 + at

∴ a = \(\frac{w_2-w_1}{t}\)

Here, ω2 = 11π,

ω1 = 8 π,

∴ α =\(\frac{w_2-w_1}{t}\)

\(\frac {11π-8π}{10}\)

=\(\frac {3π}{10}\) = 0.3π rads-2

Linear acceleration is

a = rα = 0.2 × 0.3π

= 0.188 ms-2.



Discussion

No Comment Found