1.

A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Answer»

(i) Angle subtended in the 

circumference, ∠BAD = ? 

(ii) Angle subtended in the circumference, 

∠BCD = ? 

In this figure BD is chord, 

OB is radius, it is equal to OD. 

∴ OB = OD = BD 

∴ ∆OBD is equilateral triangle. 

∴ each angle is equal to 60°. 

∴ angle subtended at the centre 

∠BOD = 60°. 

(i) Angle subtended in the circumference 

∠BAD= \(\frac{1}{2}\)× angle subtended at centre ∠BOD 

= \(\frac{1}{2}\) × 60° 

∴ ∠BAD = 30°. 

(ii) The sum of either pair of opposite angles of a cyclic quadrilateral is 180°. 

∴ In cyclic quadrilateral ABCD, 

∠BAD + ∠ACD = 180 

30 + ∠ACD = 180 (∵ ∠BAD = 30°) 

∴ ∠ADC = 180 – 30 

∴ ∠ACD = 150°.



Discussion

No Comment Found

Related InterviewSolutions