1.

A chord of a circle of radius 14 cm makes a right angle at the centre. Find the areas of the minor and major segments of the circle.

Answer»

Radius of the circle = 14 cm 

Angle subtend at center = 90° 

By Pythagoras theorem = AB2 = OA2 + OB2 

= 142 +142 

AB = \(14\sqrt{2}\)

Area of sector OAB = \(\frac{90}{360}\timesπr^2\)

\(\frac{1}{4}πr^2\)

\(\frac{1}{4}\times\frac{22}7\times14\times14\) = 154 cm2

Area of triangle AOB = \(\frac{1}2\times14\times14\) = 98 cm2

So area of minor segment – OACB =area of sector – area of triangle

= 154 – 98 = 56 cm2 

Area of major segment = area of circle - area of minor segment 

\(\frac{22}7\times14\times14\) - 56

= 44 ×14 – 56 = 560 cm2



Discussion

No Comment Found