1.

A circle S ≡  0 passes through the common points of family of circles x2 + y2 + λx – 4y + 3 = 0(λ ∈ R) and have minimum area then(a) area of S ≡  0 is π sq. u(b) radius of director circle of S ≡  0 is √2(c) Radius of director circle of S ≡  0 for x–axis is 1 unit(d) S ≡ 0 never cuts |2x| = 1

Answer»

Correct option (b) radius of director circle of S ≡  0 is √2

Explanation:

(x+ y– 4y + 3) + λx = 0

∴ x = 0 and y– 4y + 3 = 0

(y – 3)(y – 1) = 0

y = 3 , 1

∴ (0,3) (0,1) are common points. 

x+ y+ 2gx + 2fy + c = 0

passing through (0,3) & (0,1)

9 + 6f + c = 0 ...........(1)

1 + 2f  +  c = 0  ......... (2)

(1) – (2) we get

8 +  4f =  0

f = –2 and c = 3

x+ y+ 2gx – 4y + 3 = 0

radius = √(g2 + 4 - 3) = √(g2 + 1)

for minimum area radius must be minimum

Since g+ 1 is positive so g must be zero

∴ radius = 1

Area = πr2 =  πsq.u.

Radius of director circle is √2 times the radius of the given circle. 

∴ Radius of director circle is √2



Discussion

No Comment Found

Related InterviewSolutions