1.

A curve y = f(x) is such that f(x)ge 0 and f(0)=0 and bounds a curvilinear triangle with the base [0,x] whose area is proportional to (n+1)^(th) power of f(x)cdot" If "f(1)=1 then find f(x).

Answer»


Solution :ACCORDING to the question `OVERSET(x)underset(0)intf(x)dx=lamda{F(x)}^(n+1)`
Where `lamda` is constant of proportionality
Differentiating both sides w.r.t x,
`f(x)=lamda(n+1)(f(x))^(n)f'(x)`
`"or "(f(x)^(n-1))f'(x)=(1)/(lamda(n+1))`
Integrating both sides w.r.t x, `((f(x))^(n))/(n)=(x)/(lamda(n+1))+C`
`f(0)=0, THEREFORE C=0`
`(f(x))^(n)=(nx)/(lamda(n+1))`
`f(1)=1`
`therefore""(n)/(lamda(n+1))=1`
`therefore""f(x)=x^(1//n)`


Discussion

No Comment Found

Related InterviewSolutions