

InterviewSolution
Saved Bookmarks
1. |
A diverging lens of refractive index `1.5` and focal length `15 cm` in air has same radii of curvature for both sides. If it is immersed in a liquid of refractive index `1.7`, calculate focal length of the lens in liquid. |
Answer» Correct Answer - `-63.75 cm` Here, `mu_g = 1.5, f_a = 15 cm, f_l = ?, mu_l = 1.7` If `R_1 = R, R_2 = -R` From `(1)/(f) = (mu - 1) ((1)/(R_1) - (1)/(R_2))` =`(mu - 1)((1)/(R) + (1)/(R)) = (2 (mu - 1))/( R)` `(1)/(f_a) = (2)/( R) ((mu_g)/(mu_a) -)` …(i) `(1)/(f_1) = (2)/(R)((mu_g)/(mu_l)-1)` ...(ii) Divide (i) by (ii), `(f_l)/(f_a)=(((mu_g)/(mu_a)-1 ))/(((mu_g)/(mu_l) - 1)) = (((1.5)/(1) -1))/(((1.5)/(1.7) - 1)) = (0.5)/(-0.2//1.7)` `f_l = (-0.5 xx 1.7)/(0.2) xx f_a = -4.25 xx 15 = -63.75 cm`. |
|