1.

A homogeneous polynomial of the second degree in n variables i.e., the expression phi=sum_(i=1)^(n)sum_(j=1)^(n)a_(ij)x_(i)x_(j) where a_(ij)=a_(ji) is called a quadratic form in n variables x_(1),x_(2)….x_(n) if A=[a_(ij)]_(nxn) is a symmetric matrix and x=[{:(x_(1)),(x_(2)),(x_(n)):}] then X^(T)AX=[X_(1)X_(2)X_(3) . . . . .X_(n)][{:(a_(11),a_(12)....a_(1n)),(a_(21),a_(22)....a_(2n)),(a_(n1),a_(n2)....a_(n n)):}][{:(x_(1)),(x_(2)),(x_(n)):}] =sum_(i=1)^(n)sum_(j=1)^(n)a_(ij)x_(i)x_(j)=phi Matrix A is called matrix of quadratic form phi. Q. The quadratic form of matrix A[{:(0,2,1),(2,3,-5),(1,-5,8):}] is

Answer»

`3x_(2)^(2)+8x_(3)^(2)+2x_(1)x_(2)+x_(1)x_(3)-5x_(2)x_(3)`
`3x_(2)^(2)+8x_(3)^(2)+4x_(1)x_(2)+2x_(1)x_(3)-10x_(3)x_(2)`
`x_(1)^(2)+2x_(2)^(2)+x_(3)^(2)+3x_(1)x_(2)-5x_(2)x_(3)+8x_(1)x_(2)`
`3x_(1)^(2)+8x_(2)^(2)+4x_(1)x_(2)+2x_(1)x_(3)+10x_(3)x_(2)`

SOLUTION :`=[x_(1)x_(2)x_(3)][{:(2x_(2)+x_(3)),(2x_(1)+3x_(2)-5x_(3)),(x_(1)-5x_(2)+8x_(3)):}]`
`=2x_(1)x_(2)+x_(1)x_(3)+2x_(1)x_(2)+3x_(2)^(2)-5x_(3)x_(2)+x_(3)x_(1)+5x_(3)x_(2)+8x_(3)^(2)`
`=3x_(2)^(3)+8x_(3)^(2)+4x_(1)x_(2)+2x_(1)x_(3)-10x_(2)x_(3)`


Discussion

No Comment Found

Related InterviewSolutions