

InterviewSolution
Saved Bookmarks
1. |
A monkey climbs up and another monkey climbs down a rope hanging from a tree with same uniform acceleration separately. If the respective masses of monkeys are in the ratio 2:3, the common acceleration must be |
Answer» <html><body><p>`(<a href="https://interviewquestions.tuteehub.com/tag/g-1003017" style="font-weight:bold;" target="_blank" title="Click to know more about G">G</a>)/(5)`<br/>`6g`<br/>`(g)/(2)`<br/>`g`</p>Solution :Let T be the tension in the <a href="https://interviewquestions.tuteehub.com/tag/rope-1191046" style="font-weight:bold;" target="_blank" title="Click to know more about ROPE">ROPE</a>.<br/> When <a href="https://interviewquestions.tuteehub.com/tag/monkey-548693" style="font-weight:bold;" target="_blank" title="Click to know more about MONKEY">MONKEY</a> climbs up with acceleration a, <br/>`T-m_1 g = m_1 a ` <br/> When another monkey climbs down with same acceleration a, <br/> ` m_2 g - Tm_2 a `<br/> Adding (i) and (ii), we get <br/> `(m_2-m_1 )g=(m_1 +m_2) a` <br/> `or(1- (m_1)/(m_2)) g=[(m_1)/(m_2)+1] a or (1- (2)/(<a href="https://interviewquestions.tuteehub.com/tag/3-301577" style="font-weight:bold;" target="_blank" title="Click to know more about 3">3</a>)) g= [(2)/(3) +1]a` <br/>` or 1/3g= (5)/(3)a ora= (g)/(5)`</body></html> | |