InterviewSolution
| 1. |
A particle in linear simple harmonic motion has a velocity of 4 ms-1 at 3m at 3 ms-1 at 4 m from mean position. What is the time taken to travel half the amplitude from its positive extreme position? |
|
Answer» Step 1. \(v=\omega\sqrt{a^2\,-\,y^2},\) \(v_2=\omega\sqrt{a^2\,-\,y_1^2}\) And \(v_2 =\omega\sqrt{a^2\,-y^2_2}\) 4 = \(\omega\sqrt{a^2\,-\,3^2}\) ...(i) And 3 = \(\omega\sqrt{a^2\,-\,4^2}\) ...(ii) Dividing eqn (i) by (ii) : \(\frac{4}{3}=\frac{\sqrt{a^2-9}}{\sqrt{a^2-16}}\) i.e., \(\frac{16}{9}=\frac{\sqrt{a^2-9}}{\sqrt{a^2-16}}\) Or 16a2 − 256 = 9a2 − 81 Or a2= 25 Or a = 5 m. Step 2. Putting a = 5 in eqn (i), 4 = 4ω Or ω = 1 rad s-1 Step 3. Time taken to travel half amplitude from positive extreme positive extreme position is given by displacement, x =acos ωt i.e., \(\frac{5}{2}= 5cos(1\times t) \,or\,cos\, t=\frac{1}{2}\) Or t = cos-1\(\frac{1}{2}\) = 60º = \(\frac{\pi}{3}\) Or t = \(\frac{3.142}{3}\) = 1.047 s. |
|