

InterviewSolution
Saved Bookmarks
1. |
A particle move so that its position verctor varies with time as `vec r=A cos omega t hat i + A sin omega t hat j`. Find the a. initial velocity of the particle, b. angle between the position vector and velocity of the particle at any time, and c. speed at any instant. |
Answer» a. Position at time `t` `vec r=A cos omega t hat i+ A sin omega that j` Instantaneous velocity, `vec v=(dvec r)/(dt)` We have `vec v=A(d)/(dt)(cos omega t)hat i+A (d)/(dt)(sin omega t)hat j` `=-A omega sin 0 hat i+A omega cos t hat j` At `t=0,v=-A omega sin 0 hat i+A omega cos 0 hat i=A omega hat j` b. For calculating the angle between two vectors. The angle `theta` between `vec r` and `vec v` can be given as `the=cos^(-1)(vec r.vec v)/(|vec r||vec v|)` Where `vec r.vec v=(A cos omega t hat i+A sin omega hat j).(-A omega sin omega t hat i+A omega cos omega t hat j)` `=omega A^(2)(-cos omega t sin omega t+sin omega t cos omega t)=0` Hence, `theta=cos t sin omega t+ sin omega t=0` Hence, `theta=cos^(-1) 0=pi //2` That means `vec v_|_ vec r`. c. Speed at any time is the magnitude of instantaneous velocity, i.e., `v=|vec v|=sqrt((-A omega sin omega t)^2+(A omega cos omega t)^2) = A omega`. |
|