| 1. |
A right pyramid has an equilateral triangular base of side 4 units. If the number of square units of its whole surface area be three times the number of cubic units of its volume, find its height.(a) 6 units (b) 10 units (c) 8 units (d) 4 units |
|
Answer» Answer: (c) = 8 units Let a be the length of each side of the base, h be the height and l be the slant height of the pyramid. Here, a = 4 cm. ∴ Slant height (l) = \(\sqrt{h^2 +\frac{a^2}{12}}\) = \(\sqrt{h^2 +\frac{16}{12}}\) = \(\sqrt{h^2 +\frac{4}{3}}\) According to the given question, Lateral surface area + Area of the base = 3 (Volume) ⇒ \(\frac{1}{2}\times 12 \times \sqrt{h^2+\frac{4}{3}} +\frac{\sqrt{3}}{4} \times (4)^2\) = \(3 \times \frac{1}{3}\times \big(\frac{\sqrt{3}}{4} \times 4^2 \times h\big)\) ⇒ \(6\sqrt{h^2+\frac{4}{3}} +4\sqrt{3}\) = \(4\sqrt{3}\) h ⇒ \(6\sqrt{h^2+\frac{4}{3}} \) = \(4\sqrt{3}(h-1)\) ⇒ \(36\big(h^2+\frac{4}{3}\big) =48(h-1)^2\) ⇒ \(3\big(h^2+\frac{4}{3}\big) = 4(h-1)^2\) ⇒ 3h2 + 4 = 4h2 – 8h + 4 ⇒ h2 – 8h = 0 ⇒ h(h – 8) = 0 ⇒ h = 8 as h ≠ 0. |
|