InterviewSolution
Saved Bookmarks
| 1. |
A sequence is defined as follows : `a_(1)=3, a_(n)=2a_(n-1)+1`, where `n gt 1`. Where `n gt 1`. Find `(a_(n+1))/(a_(n))` for n = 1, 2, 3. |
|
Answer» `a_(1)=3` `a_(n)=2a_(n-1)+1` where `n gt 1` put n=2, we get `a_(2)=2a_(1)+1=2xx3+1=7` put n=3, we get `a_(3)=2a_(2)+1=2xx7+1=15` put n=4, we get `a_(4)=2a_(3)+1=2xx15+1=31` Now, for n=1 `(a_(n+1))/(a_(n))=(a_(2))/(a_(1))=(7)/(3)` For n=2, `(a_(n+1))/(a_(n))=(a_(3))/(a_(2))=(15)/(7)` For n=3, `(a_(n+1))/(a_(n))=(a_(4))/(a_(3))=(31)/(15)` |
|