

InterviewSolution
Saved Bookmarks
1. |
A solid body rotates with angular velocity `vecomega=3thati+2t^(2) hatj rad//s`. Find (a) the magnitude of angular velocity and angular acceleration at time `t=1 s` and (b) the angle between the vectors of the angular velocity and the angular acceleration at that moment. |
Answer» `vecomega=3thati+2t^(2)hatj` ` vecalpha=(dvecomega)/(dt)=3hati+4thatj` `vecomegacdotvecalpha=9t+8t^(3)` (a) At `t=1 s`, `vecomega=3hati+2hatj` `|vecomega|=omega=sqrt((3)^(2)+(2)^(2))=sqrt13rad//s` `vecalpha=3hati+4hatj` `|vecalpha|=alpha=sqrt((3)^(2)+(4)^(2))=5rad//s^(2)` (b) `vecomegacdotvecalpha=9(1)+8(1)=17` Angle between `vecomega` and `vecalpha` `cos theta=(vecomegacdotvecalpha)/(|vecomega||vecalpha|)=(17)/(sqrt13xx5)` `theta=cos^(-1)((17)/(5sqrt13))` |
|