1.

A solution contains `A^(+)` and `B^(+)` in such a concentration that both deposit simultaneously. If current of `9.65` amp was passed through `100ml` solution for 55 seconds then find the final concentration of `A^(+)` ion if initial concentration of `B^(+)` is `0.1M`. [Fill your answer by multiplying it wity `10^(3)]`. Given: `{:(A^(+)+e^(-)rarrA,,E^(@) =- 0.5 "volt"),(B^(+)+e^(-)rarrB,,E^(@) =- 0.56 "volt"),((2.303RT)/(F) =0.06,,):}`

Answer» Correct Answer - 5
`-0.5 -(0.06)/(1)log.(1)/([A^(+)]) =- 0.56 -(0.06)/(1)log.(1)/([B^(+)])`
`0.06 = (0.06)/(1)log.([B^(+)])/([A^(+)])`
`([B^(+)])/([A^(+)]) = 10`
`[A^(+)]_("final") = 0.01`
Total equivalent of charge `= (9.65 xx 55)/(96500) = 5.5` meq
Final `[A^(+)] = (0.5)/(100) = 0.005`


Discussion

No Comment Found

Related InterviewSolutions