InterviewSolution
Saved Bookmarks
| 1. |
(a) Solve `x^(2) - 15x+ 26 = 0` (b) Solve `x+1/x = 5/2`. |
|
Answer» (a) First, let us resolve `x^(2) - 15x + 26` into factors. `rArr x^(2) - 15x + 26` `= x^(2) - 13x - 2x + 26` `= x(x-13) - 2(x-13)` `= (x-13)(x-2)`. The given equation, `x^(2) - 15 x +26 = 0` is reduced to `(x-13)(x-2) = 0` `rArr x - 13= 0` (or) `x - 2 = 0` `rArr x = 13` (or) x = 2. `:. x = 2. 13` are the roots of the given equation. (b) `(x^(2) + 1)/(x) = 5/2` `rArr 2x^(2) + 2 = 5x`. `rArr 2x^(2) - 5x + 2 = 0` `rArr 2x^(2) -4x - x + 2 = 0` `rArr 2x(x-2) - 1 (x-2)= 0` `rArr (2x-1)(x-2) = 0` `rArr 2x - 1 = 0` or `x - 2 = 0` `rArr x = 1/2` or `x = 2`. `:. x = 1/2, 2` are the roots of the given equation. |
|