1.

A sum of money is borrowed and paid back in two annual installments of Rs. 1764 each, allowing 5% compound interest. What was the sum borrowed?1). Rs. 40002). Rs. 33403). Rs. 32804). Rs. 3200

Answer»

Let’s assume that the amount borrowed is Rs. P.

Also, let each installment be Rs. A.

Now, the total amount to be repaid at the end of given time period $(= P\;{\left( {1 + \frac{R}{{100}}} \right)^T})$

Also, total amount $( = A + A\left( {1 + \frac{R}{{100}}} \right) + A{\left( {1 + \frac{R}{{100}}} \right)^2})$ ….. till T terms

In this case, A = 1764, R = 5 and T = 2

$(\THEREFORE P\;{\left( {1 + \frac{R}{{100}}} \right)^2} = A + A\left( {1 + \frac{R}{{100}}} \right) = A\left( {2 + \frac{R}{{100}}} \right))$ 

SUBSTITUTING the given values:

$(\begin{array}{l} \Rightarrow P{\left( {1 + \frac{5}{{100}}} \right)^2} = 1764\;\left( {2 + \frac{5}{{100}}} \right)\\ \Rightarrow P \times \frac{{21}}{{20}} \times \frac{{21}}{{20}} = 1764 \times \frac{{41}}{{20}}\end{array})$ 

⇒ P = 3280


Discussion

No Comment Found