1.

A tangenttotheellipsedistancedistancefromthe centreoftheellipsex^(2) +2y^(2) =6 P andQprovethatthetangent at P andQof theellipsex^(2)+ 2y^(2) =6areat rightangles .

Answer»

Solution :GIVEN , `x^(2)+ 4y^(2)=4 or(x^(2))/(4)+(y^(2))/(1)=1`
Equation of anytangentto theellipseon(i) can bewritten as
`(x)/(2)costheta + y sintheta =1`
EQUATIONOF second ellipse is

`x^(2)+2y^(2)=6`
`implies (x^(2))/(6)+(y^(2))/(3)=1`
Supposethe tangent at P andQ meetsat (h,K)Equationof thechordof contactof thetangentsthrough A (h,k) is
`(hx)/(6)+(ky)/(3)=1`
ButEqs . (iv)and (ii)represent the same STRAIGHTLINE , socomparing Eqs. (iv)adn (ii)we get
`(h//6)/( cos theta//2)=(k//3)/( sintheta)=(1)/(1)`
`implies h= 3 cos theta andk=3 sintheta`
therefore , coordinates of A are( 3 cos,`theta,3 sin theta)`
Now , thejointequationof thetangents At A isgivenby `T^(2)=SS_(1)`,
`i.e., ((hx)/(6)+(ky)/(3)-1)^(2)=((x^(2))/(6)+(y^(2))/(3)-1)((h^(2))/(6)+(h^(2))/(3)-1)`
in Eq. (V)Coefficient of `x^(2)=(h^(2))/(36)-(1)/(6)((h^(2))/(6)+(h^(2))/(3)-1))`
`=(h^(2))/(36)-(h^(2))/(36)-(k^(2))/(18)+(1)/(6)=(1)/(6)-(k^(2))/(18)`
andcoefficient of `y^(2)=(k^(2))/(9)-(1)/(3)((h^(2))/(6)+(k^(2))/(3)-1)`
`=(k^(2))/(9)-(h^(2))/(18)-(k^(2))/(9)+(1)/(3)=-(h^(2))/(18+(1)/(3)`
Again , coefficient of `x^(2)+` coefficient of `y^(2)`
`=-(1)/(18)(h^(2)+k^(2))+(1)/(6)+(1)/(3)`
`=-(1)/(18)( 9 cos ^(2)theta+ 9sin ^(2)theta+(1)/(2)`
`=-(9)/(18)+(1)/(2)=0`
whichshowsthattwo linesrepresent by Eq. (v)are atrightanglesto eachother.


Discussion

No Comment Found

Related InterviewSolutions