InterviewSolution
Saved Bookmarks
| 1. |
(a) What is the largest average velocity of blood flow in an artery of radius `2xx10^(-3)m` if the flow must remian laminar? (b) What is the corresponding flow rate? Take viscosity of blood to be `2.084xx10^(-3)Pa-s`. Density of blood is `1.06xx10^(3)kg//m^(3)`. |
|
Answer» here `r=2xx10^(-3)m,D=2r=2xx2xx10^(-3)=4xx10^(-3)m,` `eta=2.084xx10^(-3)" "Pa-s," "rho=1.06xx10^(3)kgm^(-3)` For flow to be laminar, `N_(R)=2000` (a). Now, `v_(C)=(N_(R)eta)/(rhoD)=(2000xx(2.084xx10^(-3)))/((1.06xx10^(3))xx(4xx10^(-3)))=0.98m//s`. (b). volume flowing per second `=pir^(2)v_(c)=(22)/(7)xx(2xx10^(-3))^(2)xx0.98=1.23xx10^(-5)m^(3)s^(-1)` |
|