1.

∆ABC is a right triangle right-angled at A and AC ⊥ BD. Show that(i) \(AB^2=BC.BD\)(ii) \(AC^2=BC.DC\)(iii) \(AD^2=BD.CD\)(iv) \(\frac{AB^2}{AC^2}\) = \(\frac{BD}{CD}\)

Answer»

(i) In ⊿ABD and In ⊿CAB 

∠DAB=∠ACB=90° 

∠ABD=∠CBA [Common] 

∠ADB=∠CAB [remaining angle] 

So, 

⊿ADB≅⊿CAB [By AAA Similarity] 

∴ AB/CB=BD/AB 

AB2 = BC x BD 

(ii) 

Let ∠CAB = x

InΔCBA = 180 - 90° - x

CBA = 90° - x

Similarly in ΔCAD

CAD = 90° - CAD = 90° - x 

CDA = 90° - CAB

= 90° - x

CDA = 180° - 90° - (90° - x)

CDA = x

Now in ΔCBA and ΔCAD we may observe that

CBA = CAD

CAB = ∠CDA

∠ACB = ∠DCA = 90°

Therefore ΔCBA ~ ΔCAD ( by AAA rule) 

Therefore AC/DC = BC/AC 

AC2 = DC x BC 

(iii) In DCA and ΔDAB

<DCA = DAB (both angles are equal to 90°)

<CDA =, <ADB (common)

<DAC = <DBA

ΔDCA= ΔDAB (AAA condition) 

Therefore DC/DA=DA/DB 

AD2 = BD x CD

(iv) From part (I) AB2=CBxBD 

From part (II) AC= DC x BC 

Hence AB2/AC= CB x BD/DC x BC 

AB2/AC= BD/DC 

Hence proved



Discussion

No Comment Found

Related InterviewSolutions