

InterviewSolution
Saved Bookmarks
1. |
An artificial satellite revolves around the earth, remaining close to the surface of the earth, Show that its time period is T = 2pi sqrt(R_e/g) |
Answer» <html><body><p></p>Solution :`<a href="https://interviewquestions.tuteehub.com/tag/implies-1037962" style="font-weight:bold;" target="_blank" title="Click to know more about IMPLIES">IMPLIES</a>` The necessary <a href="https://interviewquestions.tuteehub.com/tag/centripetal-415325" style="font-weight:bold;" target="_blank" title="Click to know more about CENTRIPETAL">CENTRIPETAL</a> force for satellite of mass m revolves around the earth is provided by <a href="https://interviewquestions.tuteehub.com/tag/gravitational-476409" style="font-weight:bold;" target="_blank" title="Click to know more about GRAVITATIONAL">GRAVITATIONAL</a> force. <br/> `:.`Centripetal force = Gravitational force,<br/> Subsituting this in equation (1), <br/> `:. (mv^<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>)/R_e =mg ""...(1)` <br/> but `v= R_eomega` <br/> `:. v = R_e (2pi)/T"" [ :. omega =(2pi)/T]`<br/> `:.` Subsituting this in equation (1), <br/> `:. (R_e^2xx4pi^2)/(R_e.T^2)=g` <br/> `:. T^2= <a href="https://interviewquestions.tuteehub.com/tag/4pi-1882352" style="font-weight:bold;" target="_blank" title="Click to know more about 4PI">4PI</a> ^(2) R_e/g "" :. T = 2pi sqrt((R_e)/g)`</body></html> | |