

InterviewSolution
Saved Bookmarks
1. |
An infinite dielectric sheet having charge density `sigma` has a hole of radius `R` in it. An electron is released on the axis of the hole at a distance `sqrt(3)R` from the center. Find the speed with which it crosses the center of the hole. |
Answer» Potential function is not defined for infinite conducting sheet and hence to solve this either calculate potential difference or use force equations Electric field due to infinite dielectric sheet, `E_(1)=(sigma)/(2epsilon_(0))` Electric field at the axis of a disc of radius `R`. `E_(2)=(sigma)/(2epsilon_(0))[1-(x)/(sqrt(x^(2)-R^(2)))]` Resultant electric field `E=E_(1)-E_(2)=(sigma)/(2epsilon_(0))-(x)/(sqrt(x^(2)+R^(2)))` Force on the direction `F=-(sigmaex)/(2epsilon_(0)sqrt(x^(2)+R^(2)))` `mv(dv)/(dx)=-(sigmaex)/(2epsilon_(0)sqrt(x^(2)+R^(2)))` `m int_(0)^(v)vdv=-(sigmae)/(2epsilon_(0))int_(sqrt(3R))^(0)=(x)/(sqrt(x^(2)+R^(2)))dx` `m(v^(2))/(2)=-(sigmae)/(2epsilon_(0))[sqrt(x^(2)+R^(2))]_(sqrt(3R))^(0)` `v=sqrt((sigmaeR)/(mepsilon_(0)))` |
|