

InterviewSolution
Saved Bookmarks
1. |
An object has a velocity, `v = (2hati + 4hatj) ms^(-1)` at time `t = 0s`. It undergoes a constant acceleration `a = (hati - 3hatj)ms^(-2)` for 4s. Then (i) Find the coordinates of the object if it is at origin at `t = 0` (ii) Find the magnitude of its velocity at the end of 4s. |
Answer» (i) Here original position of the object. ` vecr_(0) = x_(0)hati + y_(0)hatj = 0 hati + 0 hatj` Initial veclocity `vecv_(0) = v_(0)x hati + v_(0y) hatj = 2hatj + 4 hatj` `veca = a_(x)hati + a_(y)hatj = hatj - 3hatj` And t = 4 s. Let the final co-rodinates of the object be (x,y) . then according to the equation (iii) derived in previous section. ` x = x_(0) + v_(0x)t + 1/2a_(x)t^(2)` ` = 0 +2 xx 4 + 1/2 (1) xx 4^(2)` x = 16 `and y = y_(0) +v_(0y)t + 1/2 a_(y)t^(2) = 0 + 4 xx 4 + 1/2(-3) xx 4^(2)` y = -8 Therefore the object lies. at (16 -8) at t= 4s. (ii) Using eqution. `vecv = vecv_(0) + vecat` ` Rightarrow vecv = (2hati + 4hatj) + ( hati - 3hatj) xx 4` ` = (2hatj + 4hatj) + ( 4hatj -12 hatj)` ` = (2+4 ) hatj + ( 4 -12)hatj` ` Rightarrow vecv = 6hati - 8o hatj ` : velocity at the end of 4s. ` |vecv| = sqrt(6^(2) +8^(2)) = 10 ms ^(-1)` Its direcationn with x-axis, ` theta = tan^(-1) (-8)/6 = 53.13^(@)` |
|