Saved Bookmarks
| 1. |
Assume that \(\sqrt {13}\) = 3.605 (approx.) and \(\sqrt{130}\) = 11.40 (approx.). Find the value of \(\sqrt{1.3}\) + \(\sqrt {1300}\) + \(\sqrt {0.013}\) (a) 36.164 (b) 37.304 (c) 36.304 (d) 37.164 |
|
Answer» (b) 37.304 \(\sqrt{1.3} +\sqrt{1300}+\sqrt{0.013}\) = \(\sqrt{\frac{130}{100}}\) + \(\sqrt{13\times100}\) + \(\sqrt{\frac{130}{10000}}\) = \({\frac{\sqrt{130}}{\sqrt{100}}}\) + \(\sqrt{13}\) x \(\sqrt{100}\) + \(\frac{\sqrt{130}}{\sqrt{10000}}\) = \(\frac{11.40}{10}\) + 3.605 x 10 + \(\frac{11.40}{100}\) = 1.14 + 36.05 + 0.114 = 37.304 |
|