InterviewSolution
| 1. |
At a certain rate per annum, the simple interest on a sum of money for one year is Rs. 260 and the compound interest on the same sum for two years is Rs. 540.80. The rate of interest per annum is 1).2). 6%3). 8%4). 10% |
|
Answer» <P>SI = (P × R × t)/100 $(A\; = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^t})$ ; CI = A - P Where, CI = Compound interest SI = Simple interest A = Amount on compound interest P = Principal R = rate % t = time in years Given, rate is same for calculating both SI and CI Let the rate be ‘R’. SI is calculated for 1 year SI = (P × R × 1)/100 = PR/100 Given, SI = Rs. 260 ⇒ PR/100 = 260 -------------eq (1) CI is calculated for 2 year $(\therefore A\; = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^2}\;)$ As, CI = A – P $(\Rightarrow C.I = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^2} - P)$ $(\Rightarrow C.I = P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right))$ Given, CI = Rs. 540.80 $(\therefore P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right) = 540.80)$ -----------eq (2) DIVIDING eq 2 by eq 1 $(\frac{{P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right)}}{{\frac{{PR}}{{100}}}} = \frac{{540.80}}{{260}})$ $(\Rightarrow \frac{{\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right)}}{{\frac{R}{{100}}}} = 2.08)$ Using a2 – B2 = (a + b)(a – b) $(\Rightarrow \frac{{\left( {1 + \frac{R}{{100}} + 1} \right)\left( {1 + \frac{R}{{100}} - 1} \right)}}{{\frac{R}{{100}}}} = 2.08)$ ⇒ 2 + R/100 = 2.08 ⇒ R = 0.08 × 100 = 8% |
|