1.

At a certain rate per annum, the simple interest on a sum of money for one year is Rs. 260 and the compound interest on the same sum for two years is Rs. 540.80. The rate of interest per annum is 1).2). 6%3). 8%4). 10%

Answer»

<P>SI = (P × R × t)/100

$(A\; = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^t})$ ; CI = A - P

Where,

CI = Compound interest

SI = Simple interest

A = Amount on compound interest

P = Principal

R = rate %

t = time in years

Given, rate is same for calculating both SI and CI

Let the rate be ‘R’.

SI is calculated for 1 year

SI = (P × R × 1)/100 = PR/100

Given, SI = Rs. 260

⇒ PR/100 = 260 -------------eq (1)

CI is calculated for 2 year

$(\therefore A\; = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^2}\;)$

As, CI = A – P

$(\Rightarrow C.I = \;P\;{\left( {\;1\; + \frac{R}{{100\;}}\;} \right)^2} - P)$

$(\Rightarrow C.I = P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right))$

Given, CI = Rs. 540.80

$(\therefore P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right) = 540.80)$ -----------eq (2)

DIVIDING eq 2 by eq 1

$(\frac{{P\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right)}}{{\frac{{PR}}{{100}}}} = \frac{{540.80}}{{260}})$

$(\Rightarrow \frac{{\left( {\;{{\left( {1 + \frac{R}{{100}}} \right)}^2} - 1} \right)}}{{\frac{R}{{100}}}} = 2.08)$

Using a2B2 = (a + b)(a – b)

$(\Rightarrow \frac{{\left( {1 + \frac{R}{{100}} + 1} \right)\left( {1 + \frac{R}{{100}} - 1} \right)}}{{\frac{R}{{100}}}} = 2.08)$

⇒ 2 + R/100 = 2.08

⇒ R = 0.08 × 100 = 8%


Discussion

No Comment Found