1.

By the principle of mathematical induction, prove 4 + 8 + 12 + … + 4n = 2n(n + 1), for all n ∈ N.

Answer»

Let P(n) denote the statement 4 + 8 + … + 4n = 2n(n + 1) 

i.e., P(n) : 4 + 8 + 12 + … + 4n = 2n(n + 1) 

Put n = 1, 

P(1): LHS = 4 

RHS = 2 (1)(1 + 1) = 4 

P(1) is true. 

Assume that P(n) is true for n = k

P(k): 4 + 8 + 12 + … + 4k = 2k(k + 1) 

To prove P(k + 1) 

i.e., to prove 4 + 8 + 12 + … + 4k + 4(k + 1) = 2(k + 1) (k + 1 + 1) 

4 + 8 + 12 + … + 4k + (4k + 4) = 2(k + 1) (k + 2) 

Consider, 4 + 8 + 12 + … + 4k + (4k + 4) = 2k(k + 1) + (4k + 4) 

= 2k(k + 1) + 4(k + 1) 

= 2k2 + 2k + 4k + 4 

= 2k2 + 6k + 4 

= 2(k + 1)(k + 2) 

P(k + 1) is also true. 

∴ By Mathematical Induction, P(n) for all value n ∈ N.



Discussion

No Comment Found