1.

Calculate the length of PQ

Answer»

We have AP = 9 cm, CQ = 6 cm and AB = 12 cm.

For triangles △BAP & △BCQ,

∠BAP = ∠BCQ = 90°(\(\because\) Angle between radius and tangent at point of contact in 90°)

∠ABP = ∠CBQ (Vertically opposite angles)

∠APB = ∠BQC (sum of angles in a triangle in 180°)

\(\therefore\) △ BAP \(\sim\) △BCQ (By AAA similarity criteria)

\(\therefore\) AP/CQ = AB/BC

⇒ BC = \(\frac{AB\times CQ}{AP}\) = \(\frac{12\times6}9\)

 = 4 x 2 = 8 cm

Now, in △ ABP,

BP2 = AP2 + AB2

 = 92 + 122

= 81 + 144

= 225

= 152

\(\therefore\) BP = 15 cm

Now, in △BCQ,

BQ2 = BC2 + QC2

 = 82 + 62

= 64 + 36 = 100 = 102

\(\therefore\)  BP = 10 cm

Now, PQ = BP + BQ = 15 + 10

= 25 cm



Discussion

No Comment Found

Related InterviewSolutions