

InterviewSolution
Saved Bookmarks
1. |
Calculate the `pH` of `0.1M K_(3)PO_(4)`soln. The third dissociation constant of orthophoshoric acid is `1.3 xx10^(-12)`. Assume that the hydrolysis proceeds only in the first step. |
Answer» First method: Use direct formula for the `pH` of salt of `S_(B)//W_(A)` `pH =(1)/(2)(pK_(w) +pK_(a) + logC)` `= (1)/(2) (14 +11.86 -1) =12.43` Second method: `K_(3)PO_(4) +H_(2)O hArr K_(2)HPO_(4) +KOH` or `PO_(4)^(3-) +H_(2)O hArr HPO_(4)^(2-) + overset(Θ)OH` Since hydrlysis proceeds only in I step. `:. [overset(Θ)OH] = C.h =C sqrt(((K_(w))/(K_(a).C)))=sqrt(((K_(w).C)/(K_(a))))` `K_(a)` is III dissociation constant of acid `H_(3)PO_(4)` `H_(3)PO hArr H^(o+) +H_(2)PO_(4)^(-1)...K_(1)` `H_(2)PO_(4)^(Θ) hArr H^(o+) + HPO_(4)^(2-) ...K_(2)` `HPO_(4)^(2-)hArr H^(o+) +PO_(4)^(3-) K_(3) = K_(a) = 1.3 xx 10^(-12)` `[overset(Θ)OH] = ((10^(-14)xx0.1)/(1.3xx10^(-12)))^(1//2) = 8.7 xx10^(-2)M` `:. pOH = 1.5634, pH = 12.4366` |
|