1.

Check whether p(x) is a multiple of g(x) or not(i) p(x) = x3 – 5x2 + 4x – 3,  g(x) = x – 2.(ii) p(x) = 2x3 – 11x2 – 4x+ 5,  g(x) = 2x + l

Answer»

(i) p(x) = x3 – 5x2 + 4x – 3,  g(x) = x – 2.

According to the question,

g(x)=x – 2,

Then, zero of g(x),

g(x) = 0

x – 2 = 0

x = 2

Therefore, zero of g(x) = 2

So, substituting the value of x in p(x), we get,

p(2) =(2)3 – 5(2)2 + 4(2) – 3

= 8 – 20 + 8 – 3

= – 7 ≠ 0

Hence, p(x) is not the multiple of g(x) since the remainder ≠ 0.

(ii) p(x) = 2x3 – 11x2 – 4x+ 5,  g(x) = 2x + l

According to the question,

g(x)= 2x + 1

Then, zero of g(x),

g(x) = 0

2x + 1 = 0

2x = – 1

x = – ½

Therefore, zero of g(x) = – ½

So, substituting the value of x in p(x), we get,

p(–½) = 2 × ( – ½ )3 – 11 × ( – ½ )2 – 4 × ( – 1/2) + 5

= – ¼ – 11/4 + 7

= 16/4

= 4 ≠ 0

Hence, p(x) is not the multiple of g(x) since the remainder ≠ 0.



Discussion

No Comment Found