1.

Cofficient of `x^(4)` in the expansion of `(1-3x+x^(2))/(e^(x))` isA. `(5)/(24)`B. `(4)/(25)`C. `(24)/(25)`D. `(25)/(24)`

Answer» Answer:
We have
`(1-3x+x^(2))/(e^(x))`
`=(1-3x+x^(2))e^(-x)`
`=e^(-x)-3xe^(-x)+x^(2)e^(-x)`
`=underset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)-3xunderset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)+x^(2)underset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)`
`therefore` coefficient of `x^(4)=(-1)^(4)/(4!)+3(-1)^(4)/(3!)+(-1)^(4)/(2!)`
`rarr` coefficient of `x^(4)=1/24+1/2+1/2=25/24`


Discussion

No Comment Found