InterviewSolution
Saved Bookmarks
| 1. |
Cofficient of `x^(4)` in the expansion of `(1-3x+x^(2))/(e^(x))` isA. `(5)/(24)`B. `(4)/(25)`C. `(24)/(25)`D. `(25)/(24)` |
|
Answer» Answer: We have `(1-3x+x^(2))/(e^(x))` `=(1-3x+x^(2))e^(-x)` `=e^(-x)-3xe^(-x)+x^(2)e^(-x)` `=underset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)-3xunderset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)+x^(2)underset(n=0)overset(infty)Sigma(-1)^(n)(x^(n))/(n!)` `therefore` coefficient of `x^(4)=(-1)^(4)/(4!)+3(-1)^(4)/(3!)+(-1)^(4)/(2!)` `rarr` coefficient of `x^(4)=1/24+1/2+1/2=25/24` |
|