InterviewSolution
Saved Bookmarks
| 1. |
Consider a system of equations where the i^th equation is ai Φi=bi Φ(i+1)+ci Φ(i+1)+di. While solving this system using Thomas algorithm, we get Φi=Pi Φ(i+1)+Qi. What are Pi and Qi?(a) \(P_i=\frac{c_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}};Q_i=\frac{b_i}{a_i-c_i P_{i-1}}\)(b) \(P_i=\frac{b_i}{a_i-c_i P_{i-1}};Q_i=\frac{c_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}}\)(c) \(P_i=\frac{c_i Q_{i-1}+b_i}{a_i-c_i P_{i-1}};Q_i=\frac{d_i}{a_i-c_i P_{i-1}}\)(d) \(P_i=\frac{d_i}{a_i-c_i P_{i-1}};Q_i=\frac{c_i Q_{i-1}+b_i}{a_i-c_i P_{i-1}}\)I have been asked this question by my college director while I was bunking the class.The origin of the question is Discretization Aspects in portion Basic Aspects of Discretization, Grid Generation with Appropriate Transformation of Computational Fluid Dynamics |
|
Answer» Right choice is (B) \(P_i=\frac{b_i}{a_i-c_i P_{i-1}};Q_i=\frac{c_i Q_{i-1}+d_i}{a_i-c_i P_{i-1}}\) |
|