1.

Consider f : R+ → [−5, ∞) given by f (x) = 9x2 + 6x − 5. Show that f is invertible with f-1(y) = (√(y + 6) - 1)/3.

Answer»

Here, function f : R+ →[−5,∞) is given as f(x) = 9x2 + 6x − 5. 

Let y be any arbitrary element of [−5,∞). 

Let y = 9x2 + 6x − 5 

⇒ y = (3x + 1)2 − 1 − 5 = (3x + 1)2 − 6 

⇒ (3x + 1)2 = y + 6 

⇒ (3x + 1)2 = √(y + 6) [as y ≥ − 5  y + 6 ≥ 0]

x = (√(y = 6) - 1)/3

Therefore, f is onto, thereby range f = [−5,∞).

Let us define g : [−5,∞)→ R+ as g(y) =  (√(y = 6) - 1)/3

Now, (gof)(x) = g(f(x)) = g(9x2 + 6x − 5) = g((3x + 1)2 − 6)

= (√((3x + 1)2 - 6) + 6 - 1)/3 = (3x + 1 - 1)/3 = x

and (fog)(y) = f(g(y)) = f((√(y + 6) - 1)/3) = [3((√(y + 6) - 1)/3) + 1]2 - 6

= (y + 6)2 - 6 = y + 6 - 6 = y

Therefore,gof = IR+ and fog = I[−5,∞)

Hence, f is invertible and the inverse of f if given by f-1(y) = g(y) = (√(y + 6) - 1)/3



Discussion

No Comment Found