InterviewSolution
Saved Bookmarks
| 1. |
Consider f(x)=Lim_(nto oo) ((a^(n)+b^(n))^((1)/(n))sinx+{e^(x)}^(n))([(1)/(ncot^(-1)n)]+1),AAx inR where agtbgt0. [Note : sgn alpha denote signum function of alpha.] Number of points where G(x)=|f(x)|+f(|x|) is non-differentiable in (-3pi,3pi), is |
|
Answer» 6 `:.""f(x)=(asinx+0)(1+1)` `:.""f(x)=2asinx` (i) `H(x)=sgn (2asinx-3)` has EXACTLY one point of discontinuty in `[0,2pi]`, then `2a sinx-3=0` must have one real ROOT in `[0,2pi],SIN(3)/(2a)` `:." "a=(3)/(2)` only `:.""` Number integral value of a is zero. `G(x)=|2asinx|+2asin|x|` (ii) Number of non-differential point of G(x) is `x=-2pi,-pi,0,pi,2pi` separately we can PROVE that G(x) is non-differentiable at x=0. |
|