InterviewSolution
Saved Bookmarks
| 1. |
Consider the D–T reaction (deuterium–tritium fusion)2 3 41 1 2 H H He n + → +(a) Calculate the energy released in MeV in this reaction from thedata:m(21H )=2.014102 um(31H ) =3.016049 u(b) Consider the radius of both deuterium and tritium to beapproximately 2.0 fm. What is the kinetic energy needed toovercome the coulomb repulsion between the two nuclei? To whattemperature must the gas be heated to initiate the reaction?(Hint: Kinetic energy required for one fusion event =averagethermal kinetic energy available with the interacting particles= 2(3kT/2); k = Boltzman’s constant, T = absolute temperature.) |
| Answer» Consider the D–T reaction (deuterium–tritium fusion)2 3 41 1 2 H H He n + → +(a) Calculate the energy released in MeV in this reaction from thedata:m(21H )=2.014102 um(31H ) =3.016049 u(b) Consider the radius of both deuterium and tritium to beapproximately 2.0 fm. What is the kinetic energy needed toovercome the coulomb repulsion between the two nuclei? To whattemperature must the gas be heated to initiate the reaction?(Hint: Kinetic energy required for one fusion event =averagethermal kinetic energy available with the interacting particles= 2(3kT/2); k = Boltzman’s constant, T = absolute temperature.) | |