1.

Consider the function defined implicitly by the equation y^3-3y+x=0 on various intervals in the real line. If x in (-oo,-2) uu (2,oo), the equation implicitly defines a unique real-valued defferentiable function y=f(x). If x in (-2,2), the equation implicitly defines a unique real-valud diferentiable function y-g(x) satisfying g_(0)=0. The area of the region bounded by the curve y=f(x), the X-axis and the line x=a and x=b, where -oo lt a lt b lt -2 is

Answer»

`int_(a)^(B)(X)/(3[{F(x)}^(2)-1])dx+by(b)-af(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-by(b)+af(a)`
`int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-by(b)+af(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx+by(b)=af(a)`

ANSWER :A


Discussion

No Comment Found

Related InterviewSolutions