1.

Consider the function h(x)=(g^(2)(x))/(2)+3x^(3)-5, where g(x) is a continuous and differentiable function. It is given that h(x) is a monotonically increasing function and g(0) = 4. Then which of the following is not true ?

Answer»

`g^(2)(1)gt10`
`h(5)GT3`
`h((5)/(2))lt2`
`g^(-1)lt22`

Solution :`h(X)=(g^(2)(x))/(2)+3x^(3)-5`
`h'(x)gt0`
`rArr""g(x)g'(x)gt-9x^(2)`
`rArr""int_(0)^(1)g(x)g'(x)dxgt-int_(0)^(1)9x^(2)dx`
`rArr""((g(1))^(2)-(g(x))^(2))/(2)gt-3(1-0)`
`rArr""(g(1))^(2)-16gt-6`
`rArr""(g(1))^(2)gt10`
`""int_(-1)^(0)g(x)g'(x)dx gt -int_(-1)^(0)9x^(2)dx`
`rArr""((g(0))^(2)-(g(-1))^(2))/(2)gt-3(0-(-1))`
`rArr""16-(g(-1))^(2)gt-6`
`rArr""(g(-1))^(2)lt22`
`""h(5)gth(0)`
`rArr""h(5)gt(g^(2)(0))/(2)+3(0)-5=3`


Discussion

No Comment Found

Related InterviewSolutions