1.

Consider the functions defined implicitly by the equationy^(3)-3y+x=0 on various intervals in the real line. If x in (-oo, -2)uu(2, oo), the equation implicitly defines a unique real-valued differentiable function y=f(x). If x in (-2, 2), the equation implicitlydefines a unique real-valued differentiable function y=g(x) satisfying g(0)=0. The area of the region bounded by the curve y=f(x), the X-axis and the lines x = a and x = b, where - oo lt a lt b lt -2, is :

Answer»

`int_(a)^(b)(x)/(3[{F(x)}^(2)-1])dx + BF(b)-AF(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx+bf(b)-af(a)`
`int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-bf(b)+af(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-bf(b)+af(a)`

Answer :A


Discussion

No Comment Found

Related InterviewSolutions