 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Consider the situation shown in figure (31-E23 ) . The switch S is open for a long time and then closed . (a) Find the charge flown through the battery when the switch S is closed (b)Find the done by the battery . | 
| Answer» a. Since a switch is open for long time. The capacitor is in series. Hence equivalent capacity is `C_(eq)=C//2`. Initial charge on each capacitor is `q_(0)=Cepsilon//2`. When switch is closed, find charge on capacitor `C_(1)`, is `q_(1)=Cepsilon` and find charge in `C_(2)`, is `q_(2)=0`. Hence, when the switch is closed, charge flow through battery is `Deltaq=(Cepsilon-(Cepsilon)/2)=(Cepsilon)/2`. b. Work done by battery is `Deltaq.epsilon=(Cepsilon)/2xxepsilon=(Cepsilon^(2))/2` c. Change in energy stored is `1/2Cepsilon^(2)-1/2xx(C-2)xxepsilon^(2)=1/4Cepsilon^(2)` d. Heat developwd is `W_("battery")-DeltaU=(Cepsilon^(2))/2-(Cepsilon^(2))/4=(Cepsilon^(2))/4`. | |