1.

Consider the two circles C_(1):x^(2)+y^(2)=a^(2)andC_(2):x^(2)+y^(2)=b^(2)(agtb) Let A be a fixed point on the circle C_(1), say A(a,0) and B be a variable point on the circle C_(2). The line BA meets the circle C_(2) again at C. 'O' being the origin. The locus of the mid-point of AB is

Answer»

`(X-(a)/(2))^(2)+y^(2)=(B^(2))/(4)`
`(x-(a)/(2))^(2)+y^(2)=(a^(2))/(4)`
`(x-(b)/(2))^(2)+y^(2)=(a^(2))/(4)`
`(x-(b)/(2))^(2)+y^(2)=(b^(2))/(4)`

ANSWER :A


Discussion

No Comment Found

Related InterviewSolutions