1.

D and E are points on the sides AB and AC respectively of a ∆ABC such that DE║BC.(i) If AD = 3.6cm, AB = 10cm and AE = 4.5cm, find EC and AC. (ii) If AB = 13.3cm, AC = 11.9cm and EC = 5.1cm, find AD. (iii) If AD/DB = 4/7 and AC = 6.6cm, find AE. (iv) If AD/AB = 8/15 and EC = 3.5cm, find AE.

Answer»

(i) In ∆ ABC, it is given that DE ∥ BC. 

Applying Thales’ theorem, we get: 

AD/DB = AE/EC 

∵ AD = 3.6 cm , AB = 10 cm, AE = 4.5cm 

∴ DB = 10 − 3.6 = 6.4cm 

Or, 3.6/6.4 = 4.5/EC 

Or, EC = 6.4×4.5/3.6 

Or, EC= 8 cm 

Thus, AC = AE + EC 

= 4.5 + 8 = 12.5 cm 

(ii) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ Theorem, we get : 

AD/DB = AE/EC 

Adding 1 to both sides, we get :

AD/DB + 1 = AE/ EC +1 

⇒ AB/DB = AC/EC

⇒ 13.3/DB = 11.9/5.1 

⇒ DB = 13.3×5.1/11.9 = 5.7 cm 

Therefore, AD=AB-DB=13.5-5.7=7.6 cm 

(iii) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ theorem, we get : 

AD/DB = AE/EC 

⇒ 4/7 = AE/EC 

Adding 1 to both the sides, we get : 

11/7 = AC/EC 

⇒ EC = 6.6×7/11 = 4.2 cm 

Therefore,

AE = AC – EC = 6.6 – 4.2 = 2.4 cm 

(iv) In ∆ ABC, it is given that DE ‖ BC. 

Applying Thales’ theorem, we get: 

AD/AB = AE/AC 

⇒ 8/15 = AE/ AE+EC 

⇒ 8/15 = AE/ AE+3.5 

⇒ 8AE + 28 = 15AE 

⇒ 7AE = 28 

⇒ AE = 4cm



Discussion

No Comment Found

Related InterviewSolutions