1.

Define radioactivity.

Answer»

Radioactivity:

In the beginning of this chapter, it was mentioned that Henry Becquerel discovered radioactivity in 1896. Heavy elements like uranium, thorium, etc. particles or radiations on their own and undergoes a decay. In this process of decay, new atoms (elements) are formed that themselves exhibit radioactivity and this process continues till a stable element is formed.

The discovery of radioactivity by Henry Becquerel was purely accidental. He observed that when uranium salt-crystals or uranium-potassium sulphate were illuminated with visible light, they emitted some invisible radiations that blackened the photographic plate placed near it which was covered by a light resistant cover. After this, scientists Marie Curie and Pierre Curie discovered the new elements radium and polonium from the pitch blend are which were more radioactive than uranium. Through the experiments, Rutherford showed that radioactive radiations are of three type which he called alpha, beta and gamma rays. The experiments performed later showed that-α (alpha) rays are helium nuclei, β (beta) rays are electrons or positrons and γ (gamma) rays are photons of high energy. Experiments also showed that the radioactivity is a result of decay of unstable nuclei. This way, we can say that radioactivity is a nuclear phenomenon. Some important facts related to radioactivity are as follows :

(i) External conditions like pressure temperature and state of radioactive substance (solid, liquid or gas) has no effect on radioactivity. Radioactivity is also unaffected by the chemical reactions or chemical combinations (like uranium or any of its compounds is radioactive). As there is contribution of only the outermost electrons in a chemical combination. Thus, the electronic configuration of atoms is not related to the radioactivity. Also, α-rays, β-particles of very high energy or emission of γ-ray photons is not possible from the emission of the outer part of atom. Thus, radioactivity is purely a nuclear phenomenon.

(ii) In the radioactive decay of nuclei, with the laws of conservation of mass, energy, charge linear momentum, angular momentum and the conservation of number of nucleons should be followed.

(iii) A nucleus say X is unstable for the decay of α and β if its mass is more than the sum of its product constituents.

(iv) In the process of radioactive decay, emission energy per atom is the order of few MeV where as it of the order of few eV for chemical reactions.



Discussion

No Comment Found

Related InterviewSolutions