1.

Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, -4)

Answer»

Given: Points are A(1, 5, 7), B(5, 1, -4)

To find: the point on z-axis which is equidistant from the points 

As we know x = 0 and y = 0 on z-axis 

Let R(0, 0, z) any point on z-axis 

According to the question: 

RA = RB 

⇒ RA2 = RB2 

Formula used: 

The distance between any two points (a, b, c) and (m, n, o) is given by,

\(\sqrt{(a-m)^2+(b-n)^2+(c-0)^2}\)

Therefore, Distance between R(0, 0, z) and A(1, 5, 7) is RA,

\(\sqrt{(0-1)^2+(0-5)^2+(z-7)^2}\) 

\(\sqrt{1+25+(z-7)^2}\) 

\(\sqrt{26+(z-7)^2}\) 

The distance between P(x, y, 0) and B(2, 1, 2) is PB,

\(\sqrt{(0-5)^2+(0-1)^2+(z-(-4)^2}\)

\(\sqrt{(z+4)^2+25+1}\)

 = \(\sqrt{(z+4)^2+26}\) 

As RA2 = RB2 

26+ (z – 7)2 = (z + 4)2 + 26 

⇒ z2+ 49 – 14z + 26 = z2+ 16 + 8z + 26 

⇒ 49 – 14z = 16 + 8z 

⇒ 49 – 16 = 14z + 8z 

⇒ 22z = 33

⇒ z = \(\frac{33}{22}\) 

⇒ z = \(\frac{3}{2}\) 

Hence point   \(\Big(0,0,\frac{3}{2}\Big)\)  on z-axis is equidistant from (1, 5, 7) and (5, 1, -4)



Discussion

No Comment Found