InterviewSolution
Saved Bookmarks
| 1. |
Evaluate (i) int((2x+5))/((x^(2)+5x+9))dx (ii) int((6x-7))/((3x^(2)-7x+5))dx (iii) int((cosx-sinx))/((cosx+sinx))dx (iv) int(sec x)/(log(secx+tanx))dx |
|
Answer» Solution :(i) PUT `(x^(2)+5x+9)` =t so that (2x+5)dx=DT. `:.int((2x+5))/((x^(2)+5x+9))dx=int(1)/(t)dt=log|t|+C` `=log|{:x^(2)+5c+9:}|+C`. (ii) Put (cosx+sinx)=t so that (cosx-sinx)dx=dt. `:.int((cosx-sinx))/((cosx+sinx))dx=int(1)/(t)dt` `=log|t|+C=log|{:(cosx+sinx):}|+C`. (iii) Put (cosx-sinx) =t so that (cosx-sinx) dx =dt. `:.int((cosx-sinx))/((cosx+sinx))dx=int(1)/(t)dt` `=log|t|+C=log|{:(cosx+sinx):}|+C` (iv) Put log(SECX+tanx)=t. Then, on DIFFERENTIATION, we get `(1)/((secx+tanx))*(secxtanx+sec^(2)x)dx=dt` or sec x dx = dt. `:.int(secx)/(log(secx+tanx))dx=int(1)/(t)dt` `=log|t|+C=log|{:(secx+tanx):}|+C`. |
|