1.

Evaluate : (i) int(dx)/(asinx+bcosx) (ii) int(dx)/(sinx+cosx)

Answer»

Solution :(i) Put `a=rcosthetaandb=rsintheta" so that "`
`r^(2)=(a^(2)+b^(2))andtheta=TAN^(-1)(b//a)`.
`:.int(dx)/(asinx+bcosx)=int(dx)/(rcosthetasinx+rsinthetacosx)`
`=(1)/(r)int(dx)/(sin(x+theta))=(1)/(r)*int"cosec "(x+theta)dx`
`=(1)/(r)log{tan((theta+x)/(2))}+C`
`=(1)/(SQRT(a^(2)+b^(2)))log{:[tan{(1)/(2)tan^(-1)((b)/(a))+(x)/(2)}]:}+C`
(ii) We have write,
`int(dx)/(sinx+COSX)=(1)/(sqrt(2))int(dx)/((1)/(sqrt(2))sinx+(1)/(sqrt(2))cosx)`
`=(1)/(sqrt(2))int(dx)/(("COS"(pi)/(4)sinx+"sin"(pi)/(4)cosx))`
`=(1)/(sqrt(2))int(dx)/(sin((pi)/(4)+x))=(1)/(sqrt(2))int"cosec"((pi)/(4)+x)dx`
`=(1)/(sqrt(2))logtan((pi)/(8)+(pi)/(2))+C`.


Discussion

No Comment Found

Related InterviewSolutions