1.

Evaluate : (i) intsin^(2)(x)/(2)dx (ii) int"tan"^(2)(x)/(2)dx (iii) intcos^(2)nxdx (iv) intcos^(5)xdx (v) intsin^(7)xdx (vi) intsin^(3)(2x+1)dx

Answer»

Solution :(i) `int"SIN"^(2)(x)/(2)dx=(1)/(2)int2"sin"^(2)(x)/(2)dx`
`=(1)/(2)int(1-cosx)dx=(1)/(2)dx-(1)/(2)intcosxdx`
`=(1)/(2)x-(1)/(2)x+C`.
(ii) `int"tan"^(2)(x)/(2)dx=int("sec"^(2)(x)/(2)-1)dx=int"sec"^(2)(x)/(2)dx-intdx`
`=intsec^(2)tdt-intdx,"where"(x)/(2)=t`
`=2tant-x+C=2"tan"(x)/(2)-x+C`.
(iii) `intcos^(2)nxdx=(1)/(2)COS^(2)nxdx`
`=(1)/(2)int(1+cos2nx)dx=(1)/(2)intdx+(1)/(2)intcos2nxdx`
`=(x)/(2)+(1)/(4n)sin2nx+C`.
(iv) `intcos^(5)xdx=intcos^(4)x*cosxdx`
`=int(1-sin^(2)x)^(2)*cosxdx=int(1-t^(2))^(2)dt,"where"sinx=t`
`=int(1+t^(4)-2t^(2))dt=intdt+int t^(4)dt-2int t^(2)dt`
`=t+(t^(5))/(5)-(2t^(3))/(3)+C=sinx+(1)/(5)sin^(5)sin^(5)x-(2)/(3)sin^(3)x+C`.
(v)`intsin^(7)xdx=fsin^(6)x*sinxdx`
`=int(1-cos^(2)x)^(3)sinxdx`
`=-(1-t^(2))dt," where"cosx=t`
`=int(t^(6)-3t^(4)+3t^(2)-1)dt=(t^(7))/(7)-(3t^(5))/(5)+t^(3)-t+C`
`(1)/(7)cos^(7)x-(3)/(5)cos^(5)x+cos^(3)x-cosx+C`.
(VI) `intsin^(3)(2x+1)dx=int{1-cos^(2)(2x+1)}*sin(2x+1)dx`
`=-(1)/(2)(1-t^(2))dt,"where"cos(2x+1)=t`
`=-(1)/(2)intdt+(1)/(2)intt^(2)dt=-(1)/(2)t+(1)/(6)t^(3)+C`
`=-(1)/(2)cos(2x+1)+(1)/(6)cos^(3)(2x+1)+C`.


Discussion

No Comment Found

Related InterviewSolutions