1.

Evaluate `int(cos x)/((1-sinx)(2-sinx))dx.`

Answer» Putting sin `x=t` cos `x dx =dt,`we get
`I=(cosx)/((1-sinx)(2-sinx))dx=int(dt)/((1-t)(2-t)).`
`Let (1)/((1-t)(2-t))=(A)/((1-t))+(B)/((2-t))`
`implies 1-=A(2-t)+B(1-t).`
Putting `t=1` in (i) , we get `A=1. . . . (i).`
Putting `t=2`in (i) , we get `B=-1.`
`therefore (1)/((1-t)(2-t))=(1)/((1-t))-(1)/((2-t))`
`implies int (cosx)/((-sinx)(2-sinx))dx=int(dt)/((1-t)(2-t))`
`=int {(1)/((1-t))-(1)/((2-t))}dt`
`=int (dt)/((1-t))-int(dt)/((2-t))`
`=-log|1-t|+log|2-t|+C`
`=log |(2-t)/(1-t)|+C=log |(2-sinx)/(1-sinx)|+C.`


Discussion

No Comment Found