 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Evaluate`int (dx)/((x^(3)+x^(2)+x+1)).` | 
| Answer» We have `(1)/((x^(3)+x^(2)+x+1))=(1)/(x^(2)(x+1)+(x+1))=(1)/((x+1)(x^(2)+1)).` `Let (1)/((x+1)(x^(2)+1))=(A)/((x+1))+(Bx+C))/((x^(2)+1))` `implies 1-=A(x^(2)+1)+(Bx+C)(x+1).. . . .(i)` Putting `x=-1`on both sides of (i),we get `A=(1)/(2).` Comparing the coefficients of `x^(2)` on both sides of (i) , we get `A+B=0impliesB=-A=(-1)/(2).` COmparing the coefficients of x on both sides of (i) , we get `B+C=0impliesC=-B=(1)/(2).` `therefore (1)/((x+1)(x^(2)+1))=(1)/(2(x+1))+((-1)/(2)x+(1)/(2))/(x^(2)+1)` `therefore int(dx)/((x^(3)+x^(2)+x+1))=int(dx)/((x+1)(x^(2)+1))` `=(1)/(2).int(dx)/((x+1))-(1)/(2)int(x)/((x^(2)+1))dx+(1)/(2)(dx)/((x^(2)+1))` `=(1)/(2).int(dx)/((x+1))-(1)/(4).int(2x)/((x^(2)+1))dx+(1)/(2)int(dx)/((x^(2)+1))` `=(1)/(2)log |x+1|-(1)/(4) log |x^(2)+1|+(1)/(2) tan^(-1)x+C.` | |