1.

Evaluate`int (dx)/((x^(3)+x^(2)+x+1)).`

Answer» We have `(1)/((x^(3)+x^(2)+x+1))=(1)/(x^(2)(x+1)+(x+1))=(1)/((x+1)(x^(2)+1)).`
`Let (1)/((x+1)(x^(2)+1))=(A)/((x+1))+(Bx+C))/((x^(2)+1))`
`implies 1-=A(x^(2)+1)+(Bx+C)(x+1).. . . .(i)`
Putting `x=-1`on both sides of (i),we get `A=(1)/(2).`
Comparing the coefficients of `x^(2)` on both sides of (i) , we get
`A+B=0impliesB=-A=(-1)/(2).`
COmparing the coefficients of x on both sides of (i) , we get
`B+C=0impliesC=-B=(1)/(2).`
`therefore (1)/((x+1)(x^(2)+1))=(1)/(2(x+1))+((-1)/(2)x+(1)/(2))/(x^(2)+1)`
`therefore int(dx)/((x^(3)+x^(2)+x+1))=int(dx)/((x+1)(x^(2)+1))`
`=(1)/(2).int(dx)/((x+1))-(1)/(2)int(x)/((x^(2)+1))dx+(1)/(2)(dx)/((x^(2)+1))`
`=(1)/(2).int(dx)/((x+1))-(1)/(4).int(2x)/((x^(2)+1))dx+(1)/(2)int(dx)/((x^(2)+1))`
`=(1)/(2)log |x+1|-(1)/(4) log |x^(2)+1|+(1)/(2) tan^(-1)x+C.`


Discussion

No Comment Found